Web Scraping And Stock Trading — What’s The Beneficial Link In Between?

Web Scraping and Stock Trading

Reading Time: 4 Minutes

Stock markets tend to react very quickly to various factors. The rapid changes are tough to predict and may not conform to foresight, thats why Web Scraping and Stock Trading became so connected.

We aim to showcase the beneficial link between Web Scraping and Stock Trading using data science to identify high-potential stocks and forecast future prices/price movements to maximize an investor’s chances of success.

Reviewing stock fundamentals only at the current year does not reveal much since the situation may differ in that financial year. Instead, we need to look at performance indicators to get a clear picture of its performance over the past few years.

Success comes from choosing stocks with solid fundamentals out of thousands. Picking a fundamentally sound stock involves investigating stocks from different angles, such as evaluating fundamental ratios, company management analysis, product impact in the consumer market, competitors, and many more.

Investment firms nowadays are in the race to develop sophisticated algorithms for stock trading. They need a large amount of accurate data for stock price prediction, stock market sentiment analysis, and equity research.

There is an inexpensive way for independent analysts to collect data at scale to forecast the stock market easily. We are going to find that out what we can achieve using Web Scraping.

Python, a high-level, interpreted, and general-purpose scripting language, can be used to extract stock data by finance experts seeking to upgrade their expertise. But how can we use the content of news analytics to predict stock price performance? 

Stock Market Data Scraping

When extracted and analyzed in real-time, web scraping financial data can provide wealthy information for investments and trading. An easy spot, to begin with, can be Yahoo Finance scraping.

You can scrape data for varied purposes. But manipulating web data can be tricky, especially when the website gets updated.

The need to keep data insights has always been the standard in the stock market industry, mainly to drive insights and make well-evaluated investment choices. Institutions like hedge funds, banks, asset managers, and others hoard data. They need it to have their investment decisions secure.

Equity research, wealth management investing, hedge fund managing, corporate finance, etc., all understand the need for automatically extracted legal information. But they do not have the tools to extract the data and get them in a structured format.

Using an automated method such as scraping to track large amounts of data such as job posting information, news, social media, satellite data, and app data will help financial companies obtain valuable insights.

Behavioral economics reveals that our decisions are susceptible to all kinds of cognitive biases, plainly, emotions. Using the data, financial organizations can perform sentiment analysis to grab people’s attitudes towards the market, indicating the market trend.

It might also be helpful to checkout and scrape websites such as Indeed.com to gather the company’s employee profile data.

Web scraping can provide investors with information from all angles, such as market forces, consumer behavior, competitive intelligence, and so on, making strategic decisions easier.

Stock market data scraping helps efficient decision-making, affects the financial structure’s effectiveness, and identifies the data scientists and portfolio managers’ right data sets. 

It is called the identification of alpha opportunities:

“a measure of the active return on an investment, the performance of that investment compared with a suitable market index.”

Web scraping is the most powerful tool for alternative data for hedge funds among all the approaches.

Why Scrape Stock Data?

Many companies need to scrape stock data, since market is in the spotlight of attention. Everyone needs data for trading prices, and changes of securities, mutual funds, futures, cryptocurrencies, etc.

Financial statements, press releases, and other business-related news are also sources of data that people will scrape. Stock trading organizations leverage data from online trading portals to keep records of stock prices.

Stock data helps companies predict market trends and buy/sell stocks for the highest profits—the same for trades in futures, currencies, and other financial products.

With complete data at hand, cross-comparison becomes more accessible, and a bigger picture manifests. Portfolio managers do equity research to predict the performance of multiple stocks.

If you scrape stock data, you can use this information to identify the pattern of their changes and further develop an algorithmic trading model. Before getting to this end, a vast amount of data will involve in the quantitative analysis.

Process of Data Acquisition

When scraping stock data, the first step is to define the URL(s) from which the scraper will get data from the execution code. The URL then displays the HTML or XML page containing the scraper’s data, which returns the requested information.

The scraper can examine the data shown in the target URL until the information has been collected. Then it will identify the necessary data for extraction and then run the execution code. After the data has been scraped, it is translated and saved in the desired format.

We do this using Python – a diverse programming language with many applications in the programming space.  Each of the activities that are carried out using Python includes various libraries associated with them.  Web scraping with Python uses many libraries, including Selenium, Beautiful Soup, and Pandas.

Market Data Insights

Discussion about web scraping and stock trading provides information that only scratches the surface, and there is more to it., like understanding interactions between indicators that give even better insights. Usually, everyone goes over the past few years’ financial reports to determine the actual reasons behind observed changes.

Reading plots and developing a story is an art that you can master by practice and experience. To make strategic business decisions, the finance industry needs a critical amount of automatically extracted data.

Scraping has proven to be the most effective method for various applications, including venture capital, hedge funds, equity research review, and so on. Scraping has enormous potential, and the amount and sort of data it can generate is something that any financial service provider should take advantage of.

Final Thoughts

Web Scraping and stock trading are deeply linked. Software applications are designed to scour web data in the most trendy and organized way possible. That provides information that will forever redefine the meaning of the information available on the internet.

For a leading news organization, data scraping companies can retrieve critical data points from corporate reports and financial statements and detailed crawling and extracting data.

You May Also Like